
Journal of Srructural Geology, Vol. 17, No. 11, pp. 1615 to 1620,199s 
Copyright 0 1995 Elsevier Science Ltd 

Printed’ib C%ea~Britain. All rights reserved 
0191~8141/95 $9.50+0.00 

0191_8141(95)E0016-E 

Deflection of pure shear viscous flow around a rigid spherical body 
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Abstract-This paper theoretically simulates viscous flow around a rigid spherical body during far-field pure 
shear deformation, and derives the velocity vector, kinematical parameters such as the rate-of-strain tensor and 
dynamic parameters such as the differential stress. The results are applied to microstructures around porphyro- 
blasts and porphyroclasts. They reveal that in the pressure shadow regions pressure is lower, but differential 
stress is rather higher, and the strain is larger. Thus, this region is not a ‘shadow’ region for deformation. 

INTRODUCTION 

Pure shear deformation of a homogeneous material is 
one of the fundamental deformation modes which is 
analysed in textbooks of structural geology (e.g. Jaeger 
& Cook 1969, Means 1976, Ramsay & Huber 1983). 
However, if a rigid spherical body is enclosed in a 
material in pure shear, the deformation will be highly 
disturbed around the sphere. Locally, the deformation is 
no longer perfect pure shear. This paper deals with such 
deformation in theory, and will quantify particle paths, 
kinematic parameters such as the rate-of-strain tensor, 
and dynamic parameters such as the stress tensor any- 
where in the matrix around a rigid sphere. Some results 
are already established by Oertel (1965). However, 
Oertel’s analysis is restricted to a narrow region close to 
the sphere. The present paper will analyse more para- 
meters relevant to geological structures, and in a wider 
region than Oertel’s (1965). The analysis simulates de- 
formation around porphyroclasts, porphyroblasts or 
pebbles. This paper specially discusses physical con- 
ditions in ‘pressure shadow regions’ around a porphyro- 
blast in metamorphic rocks. 

METHOD 

We assume that the viscous material is an incompress- 
ible Newtonian fluid and that the deformation is very 
slow and not time-dependent. A rigid sphere of unit 
radius is embedded in the fluid so that its centre is 
situated at the origin of the Cartesian coordinate system 
(x, y, z). We also assume no volume loss and no slip or 
detachment between the spherical body and the matrix 
during deformation. The basic equation has been 
already solved in different ways (e.g. Oertel1965, Wak- 
iya 1965, Masuda & Ando 1988a). Here we follow the 
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method proposed by Masuda & Ando (1988a). Masuda 
& Ando analysed deflection of simple shear viscous flow 
around a spherical body. However, their basic equations 
can be also applied to pure shear viscous flow. 

The method is briefly summarized as follows. The 
velocity vectors (u, v, w) are obtained by solving the 
Navier-Stokes equation for very slow flow: 

pv2w = $ 

and the continuity equation: 

(1) 

(2) 

where ,u is the viscosity, p is the pressure and V2 is an 
operator identical to a2/dx2 + a2/ay2 + a2/a2. Provided 
there is no rotation of the central sphere, the velocity u, 
v, and w, the solution of equations (1) and (2), are 
approximately expressed as 
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where A l,n, A,,, andA,,, (n = 1,2,. . ., 24) are functions 
of x, y and z and B, (n = 1,2, . . . ,24) are constants. The 
functions are fully described in Masuda & Ando 
(1988b), where the constants are determined to satisfy 
the boundary condition of the flow. 
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Determination of the constants 

The far-field velocity is assumed to be: 

u = 0.2x 

v=o (4) 

w = -0.22 

which indicates that the deformation far from the sphere 
is plane strain, and that the compression and extension 
axes are parallel to the z and x axes, respectively. The 
determination of B, (n = 1,2, . . . ,24) was performed as 
follows. We selected eight points far from the sphere 
where the flow is practically pure shear, and their 
velocities u, v and w were given by equation (4). Since 
A 1 n, AZ,n and A3,n (n = 1, 2, . . ., 24) are known, we 
derive a series of 24 equations whose unknown constants 
are B, (n = 1,2, . . . ,24) by substituting (u, v, w) at the 
eight points into equation (3). B, (n = 1,2, . . ., 24) are 
determined by solving these. Once a set of B, (n = 1,2, 

. . .> 24) are determined u, v, w elsewhere can be calcu- 
lated by equation (3). 

RESULTS 

Although the method is applied to three-dimensional 
flow, our analysis concentrates on the x-z plane where y 
= 0 because of simplicity. The particles on the X-Z plane 
never leave this plane. 

Velocity vector 

The flow is highly affected by the existence of the 
sphere (Fig. 1). The effect is gradually attenuated with 
distance from the sphere until the flow becomes pure 
shear in regions far from the sphere. The velocity is very 
slow close to the sphere. The velocity vector is distrib- 
uted symmetrically to the x and z axes. 
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Fig. 1. Velocity vector field (m s-l) around a rigid sphere. Bar lengths 
represent velocity magnitudes. 

Fig. 2. Particle paths. The numbers attached to dots on each particle 
path indicate the magnitude of far-field compressional strain parallel 
to the zaxis (E) from the initial position at z = 2.85 and -2.85 (e = 0). 

Particle paths 

Particle paths are traced by applying the same tech- 
nique used in Masuda & Ando (1988a, p.341). Taking a 
particle of fluid at (xi, Zi), the new position (Xi+ 1, Zi+l) of 
the particle after a short time (At) is approximately 
expressed as 

xi+l = Xi + Ui At 
(5) 

zi+l = Zi + Wi At 

where Ui and Wi are u and w at (Xi, z,), respectively. We 
can derive the next position of the particle in the same 
way. If At is very small, a smooth particle path is drawn. 
We set At = 0.05 in our calculation. The results are 
shown in Fig. 2. Each particle path is symmetrical to the 
x and’z axes. Deflection of the flow is prominent in 
regions near the sphere (x and z ~1.5). As an indicator 
of strain, we use E which is defined by the far-field 
compressional natural strain parallel to the z-axis. In 
practice, E can be represented by the number of repeti- 
tions of the above calculation (number of strain incre- 
ments). The numbers attached to dots on particle paths 
in Fig. 2 indicate E values for the particles initially placed 
at z = 2.85 and -2.85. Slow velocity close to the sphere 
is accentuated by comparing these numbers. 

Distortion of marker lines 

Distortion of marker lines can be followed by applying 
the particle-path technique to initial particles arranged 
in a line (Fig. 3). The ‘millipede structure’ (Bell & 
Rubenach 1980) occurs when the lines were initially 
oriented at 90” to the x axis (i.e. parallel to shortening). 
Initially inclined lines (e.g. 45”) are asymmetrically dis- 
torted with respect to the x and z axes. If we do not know 
the reference coordinate axes and the type of defor- 
mation (simple shear or pure shear), we cannot dis- 
tinguish lines of initial orientation of 70” at E = 1 (Fig. 3) 



Deflection of pure shear around spheres 1617 

- I initial orientation 

1 
::: > %I24 /i//i , ::;/: 

Fig. 3. Distortion of marker lines of various original orientation after 
various far-field compressional strains parallel to the z axis (E). 

from those of initial orientation of 135” at y = 2 produced 
by simple shear (compare fig. 5 of Masuda & Ando 
1988a). 

Strain ellipses 

Distortion of circles into strain ellipses (Fig. 4) is 
calculated using initial points arranged in circles. The 
longest axes of the strain ellipses are oriented symmetri- 
cally to the x and z axes. Figure 5 shows the distribution 
of strain schematically for E = 1.6, from Fig. 4. Opposite 
regions very near the sphere and the x axis (x <l .l) are 
least deformed, whereas those on the z axis (z <l. 1) are 
also least deformed. Opposite regions near the x axis ((xl 
>1.9) are more deformed than those distant from the x 
axis. 

Rate of strain 

Components of rate-of-strain tensor (eXX, ezr, e,) 
(e.g. Masuda & Ando 1988a, p. 343) are expressed as: 

au 
e xx = - 

ax 

aw 
e zz = - az 

Thus, they are derived directly by differentiating u and w 
by x and z. Principal axes and principal strain are 
calculated easily from these components (e.g. Jaeger & 
Cook 1969, p. 13-14). The principal axes are shown in 
Fig. 6. Both their orientations and magnitudes are 

affected by the presence of the rigid sphere. Regions 
very close to the sphere (w ~1.2) appear highly 
deflected. 

Pressure 

Pressure p is directly obtained as a function of x, y and 
z by solving equations (1) and (2) (for detail, see Masuda 
& Ando 1988a). As a boundary condition, we assume p 
= 0 for the far-field. The magnitude of pressure is not 
obtained unless the viscosity of the matrix material is 
given. Here, we show normalized pressure (= pressure/ 
viscosity) instead of pressure (Fig. 7). Pressure maxi- 
mizes on the z-axis near the sphere, whereas it minimizes 
on the x-axis near the sphere. Apart from the sign, the 
pressure distribution pattern has an apparent 4-fold 
symmetry, a 2-fold one if the sign is taken into account. 
This pattern is very similar to that of simple shear (fig. 2 

E =o 

E =0.4 

E =0.8 

& =1.2 

E =1.6 

Fig. 4. Strain patterns and strain ellipses up to E = 1.6. 
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Fig. 5. Schematic drawing of the intensity of strain around the sphere at E = 1.6. Regions in black, shaded, stippled and 
white have higher, equivalent, slightly lower and much lower axial ratios of strain ellipses than those at far field, 

respectively. 

of Masuda & Ando 1988a) if the figure is rotated 45” 
counterclockwise. 

Differential stress 

Components of the stress tensor (a,,, ozz, a,,) (e.g. 
Lamb 1932, p. 574) are related to those of the strain 
tensor and pressure as 

(7 XX = -P + 2pexx 

(5 zz = -p + 2pe,, (7) 

0 xz = 2,ue,,. 

As the magnitude of stress is not obtained unless visco- 
sity is given, we calculated magnitude of normalized 
stress (stress/viscosity). The orientation and magnitude 
of principal stresses (o,, as) are calculated from the 
stress components. Their distribution pattern is similar 
to that of the rate-of-strain tensor (Fig. 6) although the 
dimension is different, because a linear relationship 
between stress and strain is assumed for Newtonian 
viscous materials. The magnitude of differential stress CJ, 
- us (ai > as) is obtained, as shown in Fig. 8. The 
pattern is symmetrical with the x and z axes. Approach- 
ing the sphere along the x and z axes, the differential 
stress first increases but then rapidly drops near the 
sphere (X or z ~1.3) and becomes zero at its surface. The 
differential stress maximizes on the sphere surface half- 
way between the axes, whereas it minimizes on the 
sphere and on the x and z axes. If no sphere is enclosed in 
the flow, the normalized differential stress is 0.8 every- 
where, because we assumed a boundary condition of the 
flow as equation (4). As the normalized differential 
stress >1.6 is restricted to very narrow regions close to 
the sphere, extreme intensification of differential stress 
does not occur in most regions around the sphere. 
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Fig. 6. Principal orientations of the rate-of-strain tensor (SC’): (a) 
extensional; (b) compressional principal strain rates. 
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Vorticity 

Fig. 7. Magnitude of normalized pressure (pressure/viscosity) (s-l). 

Fig. 8. Magnitude of normalized differential stress (differential stress/ 
viscosity) (s-l). 

0.05 I -0.05 

Fig. 9. Magnitude of vorticity (s-l). 

The vorticity (o), defined as 

&)=du-dw 
a.2 ax' 

is calculated directly by differentiating w and u by x and z 
in the same way as when we calculated components of 
strain tensor. The vorticity distribution is shown in Fig. 9 
and is symmetrical to the axes apart from the sign. It 
becomes important only near the sphere. In the far field, 
vorticity asymptotically decreases to zero. Regions of 
large absolute vorticity (with positive and negative 
signs) correspond well to those with large differential 
stress (Fig. 8). 

Kinematic vorticity number 

Kinematic vorticity number, W, (Means et al. 1980) is 
calculated by: 

where s1 and s3 are the principal strain rates. The 
distribution of the kinematic vorticity number is shown 
in Fig. 10, and it is again symmetrical with the axes apart 
from the sign. The kinematic vorticity number is nega- 
tive where the vorticity is negative. If no sphere is 
enclosed in the flow, the kinematic vorticity number 
would be zero everywhere. 

GEOLOGICAL IMPLICATIONS 

Our study assumes a rigid sphere in a pure shear 
deformation field. In rocks these might occur as por- 
phyroclasts in mylonites, as porphyroblasts in metamor- 
phic rocks, and in many other contexts. However, it is 
rather more difficult to judge whether the far-field 
deformation of such porphyroclasts or porphyroblasts 
was actually an ideal pure shear. Symmetrically def- 
lected foliations wrapping around a central porphyro- 
blast (Fig. lla) may be the evidence of natural pure 
shear deformation. 

A microstructure of the type schematically shown in 
Fig. 11(a) has been called a pressure shadow by Spry 
(1969). The pressure shadow is defined as ‘a region in a 
rock which is protected from deformation by the pres- 
ence of a relatively rigid object’ (Spry 1969, p. 246). This 
definition relies on characteristics of the strain rather 
than the pressure distribution implied by its name. 
Accepting our assumptions made for the previous calcu- 
lations, and comparing such a structure with the calcu- 
lated distributions of pressure (Fig. 7), differential stress 
(Fig. 8) and strain (Fig. 4), we can state that the pressure 
shadow had developed in the ‘shadow region’ where 
pressure is low, but that the region is subject to a rather 
high differential stress and high strain, except for a 
narrow region very close to the sphere. Therefore, the 
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Fig. 10. Kinematic vorticity number 

definition and the concept of the pressure shadow should 
be revised as referring to pressure only and not to the 
strain and stress distributions. An alternative proposal is 
to abandon ‘pressure shadow’ and to compose a new 
name emphasizing the stress and strain distributions. 
However, this seems impractical, because the term 
‘pressure shadow’ is in popular use. 

The phenomenon sketched in Fig, 11(b) was called a 
‘pressure shadow’ by Ramsay & Huber (1982), and a 
‘pressure fringe’ by Spry (1969, p. 240). According to 
Ramsay & Huber (1982, p. 279), a ‘pressure shadow’ is 
defined as ‘a region of low strain protected from defor- 
mation by a rigid or competent object in a rock of lower 
competence’. As this microstructure involves a com- 
petent matrix, the present results are not directly appli- 
cable. However, this definition is also not acceptable. 
The feature forms by detachment and subsequent separ- 
ation between pyrite and the matrix and by the growth of 
fibrous minerals, such as quartz or calcite, in the gap. 
The detachment and separation are driven by the local 
tensile stress exceeding that in the surrounding material. 
Thus, the feature cannot be described or associated with 
‘a region of low stress’. 
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matrix pressure shadow 

Fig. 11. (a) Porphyroblast and surroundings, redrawn from Spry 
(1969, fig. 58(b), p, 252); (b) so-called pressure shadow near a pyrite 
grain, slightly modified from Ramsay & Huber (1982, fig. 14.7, p. 26X). 
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